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Eratosthenes, the third librarian of the Great Library of Alexandria, measured the 
circumference of Earth around 240 B.C.E.  Having learned that the Sun passed through 
the zenith1 on the summer solstice2 as seen in modern day Aswan, he measured the length 
of a shadow on the solstice in Alexandria.  By converting the measurement to an angle he 
determined the difference in latitude – what fraction of a circle spanned the separation – 
between Aswan and Alexandria. Knowing the physical distance between Aswan and 
Alexandria allowed him to determine the circumference of Earth.   
 
Cooperating schools can duplicate Eratosthenes’ measurements without the use of present 
day technology, if desired. Sharing their data permits students to calculate the 
circumference and the radius of Earth. The measurements do not require a site on the 
Tropic of Cancer (or the Tropic of Capricorn) but they must be made at local solar noon 
on the same date.  The schools’ separation must be known and the other school should be 
as close as possible to due north or south of your campus.  (If the schools are at 
significantly different elevations, this will produce some error; having a larger distance 
between the schools will reduce the error.) 
 

                                                
1 The zenith is the point in the sky directly overhead.  Most people assume it is lower in the sky than it 
actually is.  Looking up, slowly spin your body in place:  the axis of rotation of the sky marks the zenith. 
2 The summer solstice marks the maximum points above and below the equator in the Sun’s annual journey 
through the sky.  Summer is defined to begin in the northern and southern hemispheres, respectively, when 
it reaches those maximum points.  The latitudes of these maxima, approximately 23.5° North and South, 
define the parallels of latitude known as the Tropic of Cancer in the north and the Tropic of Capricorn in 
the south. 



OBJECTIVE: Make measurements of the lengths of shadows on the same date at local 
noon3.  From these measurements, determine the circumference and radius of Earth. 
 
APPARATUS: (1) Build and install, or find on campus, a gnomon (pronounced noh-

mun) to cast the shadow whose length will be measured.  Your gnomon may be 
as simple as a dowel, flagpole, volleyball net support, or fence post.  It is 
important that it be truly vertical.  A circular cross-section is desirable so the 
end of the shadow is easily interpreted.  Make sure the gnomon is positioned on 
a flat, truly horizontal surface large enough for the gnomon’s noontime shadow 
to fall on it during all seasons (the shadow will be longest at the winter solstice).  
There should be an unobstructed view of the Sun at local noon (which can be 
different by more than an hour from clock [Standard Time] noon).  Higher 
gnomons are more impressive but also have “fuzzier,” less distinct shadows at 
their ends, making the length measurement more ambiguous. Use a carpenter’s 
level to make measurements of 90° at two positions separated by about 90° 
around the gnomon to verify the gnomon is truly along a radius from Earth’s 
center (i.e., vertical, perpendicular to the ground).  The carpenter’s level can 
also confirm that the surface around the gnomon is flat and level (thus the 
gnomon perpendicular [normal] to the surface). 

(2) A tape measure will be used to measure the height of the gnomon and the 
length of its shadow on the same plane as its base. 

(3) A scientific calculator (or spreadsheet) for each student or group of students. 
(4) If desired:  A sundial4 will provide local solar noon for any date during the 

day(light).  The gnomon itself serves as a sun dial if time marks are made on the 
ground.  

(5) Alternate approach to calculate the clock time of noon:  Map or a Global 
Positioning System (GPS) unit (or cellular telephone with the appropriate app) 
is used to determine your school’s latitude and longitude and azimuth to the 
collaborating school.  See THE UNDERLYING PRINCIPLES below for the 
calculation. 

 
PROCEDURE:   
 
For a measurement of Earth’s circumference, same-day local solar noon measurements of 
the length of the gnomon’s shadow must be made at two locations with a known 
difference in latitude.  A greater latitude difference and a lesser longitude difference will 
improve the accuracy of the final result.  The following steps need to be followed at both 
collaborating schools. 

                                                
3 Local noon is measured with a sundial, not a clock face.  Given a school’s longitude, the clock time of 
local noon is easily computed or it can be determined by observation. 
4 A sundial is a calibrated device whose gnomon casts a shadow on numerals indicating time of day.  Often 
the gnomon is tilted to the latitude of the sundial’s position on Earth.  If the sundial’s design includes a 
tilted gnomon, the sundial must be aligned so the gnomon parallels the local north-south meridian.  In other 
words, the gnomon points north.  More generally, the tilted gnomon of a sundial should point toward the 
celestial pole of the hemisphere, north or south, in which it is sited.   



 
Establish the gnomon, in place and vertical.  Measure the height of the gnomon.   
 
Determine the clock time of local noon if a sundial is not being used.  This can be 
accomplished mathematically with GPS or map coordinates and the formulas in THE 
UNDERLYING PRINCIPLES or by observation.   
 
To do this by observation, in advance of the coordinated observation date calibrate the 
gnomon by observing the clock time when the gnomon’s shadow is shortest. Observe the 
gnomon’s shadow for a span of about two hours, marking the ground with chalk or tape 
every 10 minutes, to confirm the clock time when its shadow is shortest.  When daylight 
saving time is in use, the time of local noon can be over an hour later than clock-noon.  
(Note: The standard clock time of local noon changes significantly over monthly intervals 
due to the shape of Earth’s orbit around the Sun.  Measure your local noon on a date as 
close as possible to the day of coordinated observation.)  Alternatively, the clock time of 
local noon can be calculated, as mentioned above, and then confirmed during the 
observations of the gnomon’s shadow length. 
 
Confirm the date when shadow measurements will be made with the partnering school, 
including alternate dates if weather or other events interfere on the primary date.  The 
partner school will need to have made the same preparations as described for your school.   
 
At local noon on the selected date, measure the length of the shadow of the gnomon. 
 
Now the calculations begin.  The length of the shadow (indicated with s in Figure 1) and 
the height of the gnomon (h in Fig. 1) form two sides of a right triangle. The angle at the 
top, ψ (psi), between the hypotenuse and the gnomon, is the one of interest (Fig. 1).   
 

 
 
 
 
Fig. 1.  The tangent of angle ψ is, by definition, the (opposite 
side)/(adjacent side) = (shadow’s length)/(gnomon’s height):   
tan ψ = s/h.   
 
 
 
 
 

Using the inverse tangent function, calculate ψ.   
 

ψ = arctan (s/h)                                                        (1) 
 



(Be sure your calculator is giving the arctan result in degrees rather than radians and uses 
degrees for inputs in other calculations. Some spreadsheets use radians for inputs/outputs, 
and each must be converted from/to degrees.)   
 
Determine the absolute value of the difference in the angles ψ1	
  &	
  ψ2	
  for the two schools, 	
  
	
  

Δψ	
  =	
  |ψ1	
  –	
  ψ2|                                                         (2) 
 
which is the difference in latitude between the two schools if we assume that the sun 
beams are parallel to each other (Figure 2).  
 

 
 

Fig. 2.  In this cross-section of Earth, the latitudes of the collaborating 
schools, φ1	
  and	
  φ2, are measured relative to Earth’s equator from its 
center.  Dashed line segments are tangent to Earth’s surface at each 
latitude, and represent the local horizontal surface where s is measured 
in Fig. 1. Solid line segments paralleling the Sun’s rays represent the 
edge of a gnomon’s shadow from the top of the gnomon to the ground 
surface.  The gnomons are bold segments extending along the radial 
lines from Earth’s center and have height h in Fig. 1. The small 
triangles that include ψ1	
  and	
  ψ2 are tilted, miniature versions of Fig. 1.  
Notice that angles ψ1	
  and	
  ψ2 are different at each school site because of 
their different latitudes. The difference in latitudes,  
Δφ	
  =	
  |φ1	
  -­‐	
  φ2|	
  = Δψ	
  =	
  |ψ1	
  –	
  ψ2|. 

 
The fraction of the circumference (F) of Earth spanned by the latitudes of the two schools 
is  
 

F = Δψ/360                                                           (3) 
 



If the schools are directly north/south of each other, the flight distance (D[km]) between 
them (in kilometers or miles) multiplied by 1/F gives the circumference of Earth (C). 
 

C[km] = D[km]/F                                                       (4)   
 
Finding Earth’s radius (R) is easily accomplished by dividing the circumference (C) by 
2π: 
 

R[km] = C[km]/2π                                                      (5) 
 

If the schools do not fall directly along a north-south meridian, more calculation is 
necessary.  The physical distance between schools, the flight distance D[km], is known, 
measured from a map, for instance.  By calculating the angular distance between the 
schools (Equations 6 and 7) the SCALE in [km/degree] can be calculated (Equation 8).  
Then, knowing the schools’ latitudes, the difference in their (angular) latitudes can be 
converted to the physical separation of their latitudes L[km] (Equation 9).  Use L in 
equation (4) in place of D and compute the Earth’s circumference, as before.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.  On this stylized globe, two sites and their separation are 
indicated.  Each site is on a meridian of longitude (a great circle), with 
its longitude (λ) and latitude (φ) indicated.  Δ is an arc of a great circle 
as well and is the minimum angular and physical distance between the 
two sites.  The two arcs (90 – λ1,2) and Ω are a spherical triangle that 
can be solved for the angular length of Ω[°].     

 
To determine L, the angular separation of the schools, omega = Ω[°], can be calculated 
using spherical trigonometry’s Law of Cosines:   
 

cos(Ω[°]) = sin(φ
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where:   
φ	
  = latitude [in decimal degrees, +dd.mm.ss] 
Latitudes in the northern hemisphere are positive; in the southern hemisphere they are 
negative. 
 
λ	
  =	
  longitude [in decimal degrees, +dd.mm.ss] 
Use the same algebraic sign for the longitudes as long as they don’t straddle the Prime 
Meridian at 0° longitude or the anti-meridian at 180° longitude.  If Ω crosses either of 
these meridians, assign + to one side and - to the other and proceed, taking into account 
the signs algebraically.	
  
  
Take the inverse cosine of the solution to (6) to get the angular separation Ω[°]. 

 
Ω[°] = arccos[sin(φ
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The scale determined from the angular and physical separations, 
 

SCALE = D[km]/Ω[°]     (8) 
 
can be applied to the difference in the schools’ latitudes.  As noted in Figure 2’s caption 
Δφ	
   =	
   |φ1	
   -­‐	
   φ2|	
   (and	
   =	
   Δψ	
   =	
   |ψ1	
   –	
  ψ2|;	
   the EXTENSION gives hints for a geometric 
proof), so  
 

L[km] = Δφ x SCALE    (9) 
 
Of course, having the physical distance and the angular separation of sites on a great 
circle can immediately be turned into Earth’s circumference.  Eratosthenes did not have 
the use of spherical triangle calculations (the rudiments of spherical trigonometry were 
still about two centuries in his future). It’s not known how he determined the physical 
distance between Alexandria and Aswan.  Since using a surveyor’s chain is very time 
consuming and not very practical for actual distance measurements between schools, we 
use more modern mathematics to determine a scale and permit the schools to have 
somewhat different longitudes (as well as different latitudes) for the shadow 
measurements and make the observations to demonstrate the validity of Eratosthenes’ 
method. 
 
THE UNDERLYING PRINCIPLES:   
 
Eratosthenes may have been inspired by the fact that on the summer solstice in Aswan, 
Egypt, a viewer’s shadow obscured the reflection of the Sun going down a well at local 
noon.  There on the Tropic of Cancer, a gnomon would exhibit no shadow whereas 
further north in Alexandria a measurement of the shadow would give the difference in 
latitude between Aswan and Alexandria immediately because ψ2	
  in	
  Eq. 2 is equal to zero.  



It would then be easy to calculate Earth’s circumference, even without knowing the 
actual latitudes of the two cities. 
 
In reality, any pair of known latitudes can be used directly with equations (2)-(5) to 
calculate Earth’s circumference and radius. 
 
Determining Local Solar Time without a sun dial: 
 
{Note: If you use the minimum length of the gnomon’s shadow to determine local solar 
noon, as described in the Procedure section above, the time difference between local solar 
noon and the local clock time is all you really need to calculate Local Solar Time.} 
 
Standard time zones are defined every 15° of longitude, counted from the Prime Meridian 
at 0° that runs through Greenwich, England5.  They span 7.5° both east and west of the 
zone meridian.  Determine the difference between your longitude (abbreviated “long;” 
use GPS or a map)6 and the nearest time zone longitude (TZlong, it will be a multiple of 
15°; see the table below).  Then calculate the difference between Standard Time and 
Local Solar Time, LSoT.  Sometimes Daylight Saving Time (called Summer Time in 
some places) must also be included in the calculation.  Confirm that longitudes are 
converted to decimal degrees. Operations using degrees-minutes-seconds instead of 
decimal degrees can be used but must be done and reduced correctly. 
 

U.S.	
  &	
  North	
  American	
  Time	
  Zones	
  
Zone	
  Name	
   Hawaii	
   Alaska	
   Pacific	
   Mountain	
   Central	
   Eastern	
   Atlantic	
  
Central	
  

Longitude	
  
165°	
  
West	
  

150°	
  
West	
  

120°	
  
West	
  

105°	
  
West	
  

90°	
  
West	
  

75°	
  
West	
  

60°	
  
West	
  

Time	
  
Difference	
  
From	
  	
  0°	
  

-­‐10	
  
hours	
   -­‐9	
  hours	
   -­‐8	
  hours	
   -­‐7	
  hours	
   -­‐6	
  hours	
   -­‐5	
  hours	
   -­‐4	
  hours	
  

Daylight	
  
Saving	
  Time	
  
Difference	
  

Not	
  
adopted	
   -­‐8	
  hours	
   -­‐7	
  hours	
   -­‐6	
  hours	
   -­‐5	
  hours	
   -­‐4	
  hours	
   -­‐3	
  hours	
  

	
  
 

ΔLong = TZlong – long    (10) 
 
The longitude difference turns into a time difference with the conversion 1° = 4 minutes.   
To demonstrate this, consider that the Sun goes from noon one day to noon the next, 
making a full 360° circle above and below the horizon over 24 hours:   
360°/24 hours can be converted as follows.   

                                                
5 Political time zones on maps usually have more irregular boundaries and spans. 
6 Many GPS units can be set up to provide a good value of longitude (and latitude) right on their screens.  
Smart phone apps are available for reading longitude and latitude from the phone’s built in GPS receiver.   
Alternatively, paper maps can be measured and read.  On-line maps, like those at http://www.mytopo.com/ 
and at http://www.noaa.gov/ can be used; see DATA SOURCES below for instructions. 



24 hours x [60 minutes/1 hour] = 1440 minutes  
360°/24 hours = 360°/1440 minutes 
Dividing both numerator and denominator of 360°/1440 minutes by 360 yields 
1°/4 minutes. 
   

Δt = ΔLong x 4 [min]              (11) 
 

ST = Δt + LSoT         (12) 
 
Where:  
ΔLong = Difference of the longitude of the standard time zone and the gnomon’s 
longitude7 
TZlong = time zone longitude 
long = gnomon longitude 
Δt = Difference from Standard Time 
LSoT = Local Solar Time 
ST = Standard Time 
 
Example A:  You plan to measure the Sun’s altitude at noon (12:00) Local Solar Time in 
February.  Your gnomon’s longitude is 78°34’ west = -78.5667° so your time zone 
longitude is -75°.   
 

ΔLong = -75°-(-78.5667°) = +3.5667°   (10a) 
 

Δt = +3.5667 x 4 = +14.2667 [min]           (11a) 
 

ST = 14.2667 [min] + 12:00 = 12:14.2667 = 12:14:16 local Standard Time     (12a) 
This is the Standard Time at which a sun dial will show 12:00 noon at this site. 
 
Example B:  You plan to measure the Sun’s altitude at noon (12:00) Local Solar Time in 
May.  Your gnomon’s longitude is 82°36’ west = -82.60° so your zone longitude is -90°. 
 

ΔLong = -90°-(-82.60°) = -7.40°          (10b) 
 

Δt = -7.40 x 4 = -29.60 [min]        (11b) 
 

ST = -29.60 [min] + 12:00 = 11:30.40 = 11:30:24 local Standard Time  (12b) 
   

This is the Standard Time at which a sun dial will show noon at this site.  But Daylight 
Saving Time is in effect:  “Spring forward, Fall back.”  Add one hour to the Standard 
Time:  The sun dial will show noon at 12:30:24 on the clock. 
 

                                                
7 It is very easy to get snagged by this calculation.  Longitudes WEST of Greenwich are NEGATIVE and 
subtractions of negative values may occur.  The examples illustrate some variations.   



DISCUSSION:   
 
Measurements at local noon are required to separate the mixed components of shadow 
length that would occur at other times of day.  Because of the Sun’s apparent annual 
motion around the sky (a reflection of Earth’s orbital motion), shadow measurements 
need to be made the same day.  At some times of year there can be measurable changes in 
shadow length from one noon to the next. 
 
Greater latitudinal separation reduces the effects of measurement errors, be they due to 
the soft shadow edge or uncertainties in the physical distance between measurement sites.  
Lesser longitudinal separation reduces the effect on the SCALE. 
 
The SCALE calculated in equation (8) includes an inherent error (leading to an error in 
Earth’s circumference) if the longitudes of the observing sites are different.  In general, 
the SCALE will be within 10% of the true value if the schools meet the following 
criteria:  

1. The school separations are within D < 1000 km. 
2. The azimuth from the southern school to the northern school (use a map or the 

spherical trigonometry Law of Cosines) is less than 25° east or west of true north. 
 
EXTENSIONS: 
 
Latitude Determination 
 
The school’s latitude can be measured at night using a protractor, thread or fishing 
line, and a spare hexagonal nut (or a few paperclips serving as a plumb bob on the 
thread).   Be sure the thread pivots on the measuring center of the protractor, as illustrated 
in Figure 4.  Make photocopies of the protractor on card stock and distribute the parts to 
all students so they can assemble the instrument themselves.  The thread should pivot 
from the center of the protractor’s semi-circle of angles. 
 
The observer looks along the flat edge of the protractor towards a pole star (Polaris in the 
northern hemisphere, faint Sigma Octantis in the southern hemisphere).  Once the plumb 
bob has settled, a companion with a flashlight can read the angle or a thumb and finger 
can trap the thread in place and the angle can be read indoors.  Common protractor 
designs will require the observer to subtract the measured angle from 90° to give the 
observer’s latitude.  Combined with another observer’s latitude, the calculation follows 
equations (2)-(5) as above.   
 
The pole stars in both hemispheres are not exactly centered on their respective celestial 
poles (Polaris is about 1° off, Sigma Octantis is a little closer).  This will throw off the 
results.   



 

 
Fig. 4.  The addition of a weighted thread to the measuring center of a 
protractor makes a simple angle measurement device.  By looking 
along the base of the protractor at the celestial pole, the thread indicates 
the observer’s latitude.  The thread should pivot from the center of the 
protractor’s semi-circle of angles. (Note that the indicated value may 
have to be subtracted from 90° to represent latitude, depending on the 
protractor’s design.  Remember that making the protractor’s flat side 
horizontal is the equivalent of being at the equator where the latitude is 
0° and most protractors will read 90°.) 

 
Latitude Difference   
 
Have students generate a geometric proof that Δφ	
  =	
   |φ1	
   -­‐	
  φ2|	
   = Δψ	
  =	
   |ψ1	
   –	
  ψ2|from 
Figure 2.  Hints:  Make a sketch.  The key is to determine/compare all the angles in each 
triangle (ψ, 90, 90-	
  ψ) and along a parallel ray (φ, 90, 180-[90-φ]).  Add a perpendicular 
from the parallel ray to the end of the shadow and compare the values of opposite angles. 
 
DATA SOURCES:   
 
http://www.mytopo.com/ presents topographic maps of the United States.  Pick a location 
(your city’s name and state) and search for it.  Zoom in until your school is visible.  
Center and then enlarge it further and move the cursor to the position of your gnomon 
and read its latitude and longitude just outside the lower left corner of the map.   
 
A similar, slightly clumsier procedure can be followed at http://www.noaa.gov/.  Search 
by city and state and then scroll down on the page to the map on the right side.  
Demagnify, if necessary, and drag the map area around to find your school site, magnify 
it, and then click on the gnomon position to specify the “Requested Location.”  A less 
precise position with elevation appears above the map, specified as the area of the “Point 
Forecast,” with the “Forecast Area” in a green quadrilateral.   
 



Many people know that the North Star, Polaris, can be found by using the “Pointers” on 
the Big Dipper.  One source of directions, among many, is 
 
http://earthsky.org/tonight/use-big-dipper-to-find-polaris-the-north-star.   
 
Finding Sigma Octantis, is more difficult due to its faintness.  Instructions can be found 
here (and elsewhere on the World Wide Web):  
 
http://assabfn.blogspot.com/2010/08/find-south-celestial-pole-scp.html.   
 
To find either of these pole stars, start looking after twilight is complete.  One’s eyes 
should have time to dark adapt before searching.  The sky should be cloud-free, 
transparent, and the horizon in the pole star’s direction should be free of obstructions.  
Observers at lower latitudes may have more difficulty finding these stars.   
 
A very useful discussion, with examples of spherical trigonometry including equation (6), 
can be found at http://www.krysstal.com/sphertrig.html. 
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